axjack's blog

### axjack is said to be an abbreviation for An eXistent JApanese Cool Klutz ###

平方和分解の途中式を淡々と書く。


\sum_{}(y_i-\bar{y})^2 = \sum_{}(  (y_i   -   \hat{y_i} ) + ( \hat{y_i} -  \bar{y})   )^2\\
= \sum_{}(y_i-\hat{y_i})^2  + 2\sum_{}(y_i-\hat{y_i})(\hat{y_i}-\bar{y})  + \sum_{}(\hat{y_i}-\bar{y})^2 \\

となるが、ここで上式の第二項を取り出すと


\sum_{}(y_i-\hat{y_i})(\hat{y_i}-\bar{y})\\
= \sum_{}(y_i - \hat{y_i} )(\hat{\beta}(x_i - \bar{x} ))\\
= \sum_{}(y_i - ( \bar{y} + \hat{\beta}(x_i - \bar{x} ) )) (\hat{\beta}(x_i - \bar{x} ))\\
= \sum_{}( ( y_i -  \bar{y} )  -  \hat{\beta}(x_i - \bar{x} ) ) (\hat{\beta}(x_i - \bar{x} ))\\
= \sum_{}\hat{\beta}(y_i - \bar{y} )(x_i - \bar{x} ) - \hat{\beta}^2 \sum_{}(x_i - \bar{x} )^2\\
= \hat{\beta}S_{xy} - \hat{\beta}^2S_{xx} = \hat{\beta}(S_{xy}  - \hat{\beta}S_{xx} )\\
= \hat{\beta}(S_{xy} - \frac{S_{xy}}{S_{xx}}S_{xx} )\\
= \hat{\beta}(S_{xy} - S_{xy} )\\
= 0\\

となるので、結局


\sum_{}(y_i-\bar{y})^2  = \sum_{}(y_i-\hat{y_i})^2  + \sum_{}(\hat{y_i}-\bar{y})^2 \\

と得る。

なお、

\hat{y_i} = \hat{\alpha} + \hat{\beta} x_i , \hat{y_i} - \bar{y} = \hat{\beta}(\hat{x_i} - \bar{x})\\
\Leftrightarrow \hat{y_i} = (\bar{y} - \hat{\beta}\bar{x} ) + \hat{\beta} x_i \\
\Leftrightarrow \hat{y_i} - \bar{y} = \hat{\beta}(  x_i - \bar{x} )

および、

T_{xy} = \sum_{}(x_i - \bar{x} )(y_i -\bar{y}), \\
T_{xx} = \sum_{} (x_i - \bar{x} )^2 , \\
S_{xy} = \frac{1}{n}T_{xy}, \\
S_{xx} = \frac{1}{n}T_{xx}, \\
\hat{\beta} = \frac{ T_{xy} }{ T_{xx} } = \frac{ S_{xy} }{ S_{xx} }
を用いた。

axjack is said to be an abbreviation for An eXistent JApanese Cool Klutz.